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Gene and Cell Therapy for Diabetes and Associated 
Cardio-Renal Complications 
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Nuclear reprogramming through induced 
pluripotent stem cell (iPSC) technology 

Yamanaka’s group demonstrated that introduction of four pluripotency-
associated genes (OCT4, SOX2, KLF4 and c-MYC) reprograms somatic cells 
into embryonic stem cell-like pluripotent stem cells, called iPSCs.  

"2012 Nobel prize in medicine, with Sir. John Gurdon" 



Potentials of patient-specific iPSCs 

   The iPSC technology enables  generation of patient-specific 
pluripotent stem cells from non-embryonic cell sources. 
 
   Differentiation of patient-derived iPSCs into disease-relevant 
cell types allows diagnostic and therapeutic applications. 
 
(i) in vitro modeling of patient-specific disease progression 
 
(ii) drug screening  
 
(iii) autologous cell replacement therapies for degenerative 
disorders 



Patient-specific iPSCs 
Uninfected, Day 7 LV-infected, Day 7 p.i. iPS-like colony 

iPSC clone 
78Y patient with type 2 diabetes 

SSEA4 NANOG 

iPSC-derived cardiomyocytes 

Ohmine et al., Aging 2012 



Type 1 and Type 2 Diabetes 

Both major forms of diabetes involve beta-cell 
destruction and dysfunction.  
 
Type 1 diabetes is characterized by complete 
insulin deficiency by autoimmune destruction of 
islet beta-cells.  
 
Type 2 diabetes develops when insulin secretory 
capacity can no longer compensate for peripheral 
insulin resistance.  



Regenerative Medicine for Diabetes 
 
There is great interest in developing strategies to 
expand the population of functional beta cells.  
 
Possible ways to achieve this include;  
  

 - physically replacing the beta cell mass via 
 transplantation 
  

 - increasing beta cell replication 
  

 - decreasing beta cell death 
  

 - deriving new beta cells from  
 appropriate progenitor cells 
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Embryonic stem cells for islet regeneration 

http://stemcells.nih.gov/info/scireport/chapter7.asp 
 
Lumelsky et al., 2001, Science (mouse ES) 
 
Kroon et al., 2008, Nature Biotechnology (human ES) 

Embryonic stem cells can 
renew themselves infinitely, -- 
unlimited source for islet 
regeneration. 
 
Previous studies successfully 
differentiated human 
embryonic stem cells into 
functional islet cells.  
 
However, the use of human 
embryo-derived cells for 
therapies is associated with 
ethical issues and allogeneic 
mismatch.  



Towards patient-derived iPSCs  
for a novel cell therapy for type I diabetes 

1. Biopsy  
(skin, blood, fat etc) 

2.  patient cells 

3. Introduction of 
stemness factors 

4. Generation of 
iPSCs 

5. Generation  
of islet-like cells 

6. Implantation of  
iPSC-derived islet cells 
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Guided differentiation of verified iPSCs into 
insulin-producing cells 
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iPSC-derived islet-like insulin-producing cells 
secrete C-peptide upon Glucose Stimulation 
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Indolactam V and GLP-1 facilitated generation of glucose-responsive islet like cells  

Thatava et al., Gene Therapy 2011 



Reproducible differentiation vs. clonal variations 

Patient-specific iPSCs can be used for diagnostic and 
therapeutic applications. 
 
The variations among patient-specific iPSC clones, 
especially for their pancreatic differentiation propensities, 
can affect the clinical applications of iPSCs. 
 
To address the influence of the T1D milieu, we recruited 
T1D patients, generated multiple iPSC clones from each 
individual, and systematically determined respective 
differentiation propensities.  



Recruited patients with T1D 

Sample Age/Sex Age at 
diagnosis 

Family 
history 
of T1D 

Medication Hemoglobin 
A1c % 

ND-1a 31/Male NA No NA NA 
T1D-1 b 38/Female 29 No Insulin 6.8 
T1D-2 c 47/Male 15 No Insulin 6.6 
T1D-3 d 21/Male 14 Yes Insulin 9 

a Non-diabetic individual-1; b Type 1 diabetic patient-1; c Type 1 diabetic patient-2; d Type 1 diabetic 
patient-3.  NA – Not applicable 
 

Skin biopsy-derived keratinocytes were reprogrammed by 
lentiviral vectors expressing OCT4, SOX2, KLF4 and cMYC.  
 
iPSCs were expanded under feeder-free conditions.  
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Expression of pluripotency markers in 
patient-specific iPSC clones  

Healthy donor iPSC Clone (ADND04 FB#F) 

T1D donor iPSC Clone (ADD09 HK#NO) 

We selected 3 iPSC clones from each donor.  Thatava et al., Mol Ther 2013 
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Global gene expression profiles of patient-specific iPSC clones  

Ten out of 12 T1D-specific iPSC clones showed very similar gene 
expression profiles, closely related to that of human ESCs. 

Thatava et al., Mol Ther 2013 
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Efficient differentiation of T1D patient-specific 
iPSCs into definitive endoderm 

All T1D-specific iPS clones were efficiently differentiated into 
SOX17 (green)- and FOXA2 (red)-positive endoderm cells. 

Thatava et al., Mol Ther 2013 
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endocrine hormone-expressing cells 

Only one clone from each donor could be differentiated into 
insulin-producing cells in vitro.  



Marked intra-patient variations in differentiation 
proficiency for insulin-producing cells 
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Clonal variations became increasingly prominent upon guided differentiation 
of iPSC progeny into pancreatic endoderm and islet-like cells. 



 
  
1. iPSC technology 
 
2. Intrapatient variations in diabetes-specific iPSC 

differentiation into insulin-producing cells 
 
3. Regeneration of human islets through in vivo 

maturation of human iPSC-derived pancreatic 
endoderm 

 
4. Challenges for future clinical applications 
 



In vivo maturation of iPSC-derived  
pancreatic endoderm cells into functional islets 

Transplantation of human ESC-derived pancreatic endoderm cells 
resulted in generation of glucose-responsive, insulin-producing cells 
in vivo, which could prevent streptozotocin-induced diabetes in mice 
(Kroon et al., 2008 Nat. Biotech). 
 
 
We introduced iPSC-derived pancreatic endoderm cells (PDX1-
positive cells) in a renal capsule of SCID-beige mice. We used 
various iPSC clones from different cell sources (skin, blood, heart 
and stomach) and donors, and over 20 mice were transplanted with 
the iPSC-derived cells. 
 

iPS-derived  
pancreatic progenitors iPS-derived cells in kidney 

capsule 



Transplantation of iPSC-derived pancreatic 
endoderm cells results in teratoma formation 

Within 6-8 weeks post-transplant, palpable growths were 
detected in nearly 100% of mice. 
 
 

S. Ohmine 



Frequent recurrent and metastatic tumors in recipient mice 
after teratoma removal by nephrectomy 

Removal of the iPSC-derived teratoma 
through nephrectomy frequently led to 
recurrent tumors.  
 
Some mice showed metastatic tumors in 
the abdominal cavity, lung or liver, 
suggesting that iPSC-derived 
teratoma/tumors are not necessarily 
benign.  
 

S. Ohmine 



Can we minimize teratoma formation using non-
integrating reprogramming vectors? 

Sendai viral vectors 

- DNA-independent gene expression 

- No integration  

Entry 
RNA replication 

Transcription 

Translation 

Lenti- and Retroviral vectors 

Entry Nuclear  
import 
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Transcription 

Nuclear  
export 
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Nucleus 

Cytoplasm 

- Vector integration events are 
associated with the risk of insertional 
mutagenesis 

- Sustained expression of c-Myc from 
integrated vectors can lead to 
increased tumorigenicity.  
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 Transgene-free iPS cells from elderly patients with 
diabetes using non-integrating Sendai virus vectors 
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Notable similarities in global gene express 
profiles between iPSCs made with lentiviral 
and Sendai vectors.  
(Kudva et al., 2012 Stem Cells Translational Medicine) 
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Use of transgene-free iPSCs and enzymatic dissociation allowed 
regeneration of human islets without teratoma formation (1) 

Natural mouse islets 

anti-Insulin (red) 
anti-Glucagon (green) 
nuclei (DAPI, blue) 

Transgene-free iPSC-derived islets in kidney capsule  
(SCID/beige mouse, human blood-derived iPSCs) 

anti-Insulin (red) 
anti-Glucagon (green) 
nuclei (DAPI, blue) 

Similar to human islets, 
alpha cells were also 
observed inside of the islets 

anti-Insulin (red) 
anti-PDX1 (green) 
nuclei (DAPI, blue) 

Most beta cells expressed PDX1 

S. Ohmine, M. El-Khatib 
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Use of transgene-free iPSCs and enzymatic dissociation allowed 
regeneration of human islets without teratoma formation (2) 

Variations in composition of cells in iPSC-derived human islets  

Insulin 
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DAPI 

No alpha cell islet alpha-cell- 
dominant islet 

Islet made from a type 2 diabetes-
patient-derived iPSC clone 

Insulin 
Glucagon 
DAPI We are currently optimizing the 

conditions for consistent islet 
regeneration using multiple iPSC clones. 

S. Ohmine, M. El-Khatib 



Summary 

1. iPSCs can be derived from patients with diabetes. 
  

2. Notable intra-patient variation was evident upon further guided 
differentiation.  
  

3. Transplantation of lenti-iPSC-derived pancreatic endoderm cells 
resulted in teratoma formation. 
  

4. Use of transgene-free iPSC clones and enzymatic dissociation 
steps facilitated regeneration of human islets.  

- We are currently testing the functionality and therapeutic effects of 
Sendai-iPSC-derived islets in vivo.  
  

- We are also studying the roles of reprogramming lentiviral vectors on 
the increased tumorigenicity of iPSC-derived islet-like cells. 
  

- We are going to use T1D patient iPSC-derived islets and autologous 
immune cells for studying patient-specific immune responses. 



Current challenges 

Clonal variations among patient-specific iPSCs. – Which clone represents 
a particular patient? 
 
 
Relatively low differentiation efficiency 
 ~ 90% induced to definitive endoderm 
 ~ 5% guided to insulin-producing cells  
 
 - New promising protocol recently published by Dr. Kieffer’s group 
 with human ESCs.   
 
 
Immature phenotypes of derived islets (limited response to glucose 
challenge) – Several studies with human ESCs showed generation of 
mature islet-like cells after 6-8 months of in vivo differentiation. 
 



Further challenges for clinical applications 
- Human ESCs were first used in the Geron Spinal Cord Injury Trial (October 2010, 

discontinued in Nov 2011). Advanced Cell Technology also started two trials with 
human ESC-derived cells (for Stargardt’s Macular Dystrophy and Dry Age-related 
Macular Degeneration).  
 

- iPSCs = complex cell products (pluripotent stem cells + genetic manipulations). 
No iPSC trial has been approved by FDA. 
 

- Clinical grade iPSC-islet regeneration requires GMP-grade reprogramming 
vectors and various cytokines and small molecules for pancreatic differentiation 
 

- Extremely long process for GMP (iPSC derivation/characterization ~1-2 months, 
pancreatic differentiation for few weeks). 

 
- Sustained autoimmunity in T1D (not in T2D) can reject iPSC-derived islets – 

encapsulation/immune suppression. 
 

- Balance between risk and benefit. High risk patients with diabetes and end-stage 
renal disease can generally survive ~10 years with dialysis/insulin treatments. 
Good safety records required to use iPSC-derived products in diabetes. 
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